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SUMMARY

A new finite difference methodology is developed for the solution of computational fluid dynamics
problems that do not require the use of staggered grid systems. Previous successful and robust
non-staggered methods, which used primitive variables and mass conservation in order to solve the
pressure field, either interpolate cell-face velocities or interpolate the pressure gradients in a special way,
usually with an upwind-bias to avoid the problem of odd–even coupling between the velocity and
pressure fields. The new methodology presented does not detail a ‘special interpolation procedure for a
primitive variable’, however, it manages to avoid the problem of odd–even coupling. The odd–even
coupling is avoided by applying fourth-order dissipation to the pressure field. It is shown that this
approach can be regarded as a modified Rhie and Chow scheme. The method is implemented using a
SIMPLE-type algorithm and is applied to two test problems: laminar flow over a backward-facing step
and laminar flow in a square cavity with a driven lid. Good agreement is obtained between the numerical
solutions and the corresponding benchmark solutions. The pressure dissipation term was found to
successfully suppress wiggles in the pressure field. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. The problem

Primitive variable methodologies used to predict the Navier–Stokes equations using mass
conservation to solve the pressure field are invariably solved on a staggered grid arrangement.
The scalar properties including pressure are located at a different set of grid points compared
with the velocity terms. This staggered arrangement is a well-known approach and has been
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used with a variety of methodologies [1–4]. The main reason for using this arrangement is
that it prevents odd–even coupling (sometimes referred to as checkerboarding) between the
pressure field and the velocity fields; refer to Reference [5] for a further discussion of this
problem. However, to a large degree this advantage is lost when developing ‘mass conserva-
tion’ methodologies, which either employ a curvilinear grid system, an unstructured grid
system or a finite element framework, because the numerical code becomes arduous to
develop. This difficulty has been detailed in Reference [6]. Although we are not considering
any of these developments in this paper, this difficulty is the motivation for the develop-
ment of a non-staggered scheme. The advantages of developing a non-staggered scheme are
outlined in Reference [7].

There are two approaches to successfully curing the problem of odd–even coupling
between the pressure and velocity fields. The first approach is to apply dissipation to the
pressure field. A popular scheme to achieve this employs the technique of interpolating the
cell-face velocities via ‘momentum interpolation’; this was first proposed by Rhie and Chow
[8] and has been followed by several investigators [9–18]. Rhie and Chow’s approach can
be considered essentially as a method to introduce fourth-order dissipation into the pressure
field [19]. Some authors have approached the problem by explicitly adding this term in
some form [20–22]. The second approach is not so well established. It uses a different
interpolation scheme for the pressure gradients (in contrast with the cell-face velocity
terms). A crude version of this approach was first presented in Reference [23]. More
sophisticated versions using weighted upwind interpolation for the pressure gradients have
been presented [24]. Even for advanced schemes [25,26] the secret of these approaches is
that a different form of interpolation is being used. This resolves the problem. Therefore,
one could argue that there are two approaches to resolving the problem of odd–even
coupling. The first is to introduce some form of dissipation into the solution. The second is
based on shifting the difficulty of dealing with the grid system to special interpolation
schemes, which will effectively return the numerical code back to a staggered grid system.
We can further argue that the second type of approach removes the problem by adding
dissipation in a disguised form. We should finally note that there is a third option for a
non-staggered methodology, which is to apply no special treatment to the discretized equa-
tions [27]. This may or may not lead to the prediction of a checkerboard distribution of
pressure [26], whether it occurs or not is strongly dependent on the grid refinement, flow
conditions and the boundary conditions implemented in the predictions [28].

1.2. The present contribution

In this paper, we build on the approach originated by Rhie and Chow [8] and add
fourth-order dissipation to the pressure governing equation; however, unlike the majority of
previous schemes, the dissipation is in a ‘true’ fourth-order form. We use finite difference
techniques to derive the governing algebraic equations. This limits odd–even coupling oc-
curring to a wavelength of ‘one adjacent node’ as opposed to ‘two adjacent nodes’, which
would be the case if we used a fully discretized finite volume approach. The idea of
reducing the ‘natural wavelength of the pressure oscillations’ has been previously proposed
[29].
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2. NUMERICAL ANALYSIS

2.1. Go6erning equations

The governing equations for momentum are based on simplified versions of the Navier–Stokes
equations. We assume the flow is planar, constant density and we apply continuity to the
viscous terms. The governing momentum equations are therefore expressed as
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The governing equation of continuity is
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2.2. Discretization

Normally, the first step in the solution procedure is to discretize the above governing equations
by applying conventional differencing techniques to the partial derivative terms [30]. In general
form, following the notation of Patankar [5], the above equations can be expressed as
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The ‘A ’ coefficients contain the discretized flux terms and diffusion terms for either the u
momentum equation or the 6 momentum equation. These terms have been derived elsewhere
[31]. The M index represents the nodes that form the surrounding computational molecule.
The superscripts 0, * and ** refer to ‘the last predicted solution’, ‘the first prediction level’ and
‘the correction level’ respectively. The time derivative can either be treated as a ‘real’ or as a
‘pseudo’ time derivative term, which is incorporated into the solution procedure even for the
solution of steady state problems in order to increase numerical stability [5]. When this set of
discretized equations is implemented onto a control volume, the problem of odd–even
coupling occurs at a wavelength of ‘two adjacent nodes’. We postulate that the problem can
be reduced if we adopt a slightly alternative approach, where we start by ‘semi-discretizing’ the
governing equations to the following form:
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We now employ this set of semi-discretized equations into a solution algorithm. In this paper,
the solution of the governing equations is based on the standard SIMPLE algorithm [5]. The
algorithm solves the pressure field by ensuring mass continuity is satisfied. Initially, the
algorithm predicts the velocity field based on the current pressure field. This is achieved by
solving Equations (4) and (5) for u* and 6*; in doing so we argue that Equations (7) and (8)
have been solved. The second step requires the use of an intermediate set of momentum
equations to derive a pressure correction equation. The intermediate equations can be
expressed as
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These equations are not solved directly but are used to derive a pressure correction equation.
This is achieved by respectively taking Equations (11) and (10) away from Equations (8) and
(7), obtaining the following expressions:
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where p % is the pressure correction, p*−p0 and BP represent the discretized spatial and
temporal terms of the pole coefficients in Equations (10) and (11) respectively. The argument
of using ‘intermediate momentum equations’ is found in Reference [3] when developing the
pressure implicit with splitting operators (PISO) scheme; alternatively we can follow the
argument of Patankar [5], where the ‘velocity corrections are ignored’. We considered that the
second argument is less rigorous.

Next, Equations (12) and (13) are directly substituted into Equation (9), which leads to the
following expression:
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This expression forms the Poisson pressure correction equation used to predict the pressure
field. After its solution, values of p % can be substituted into Equations (12) and (13) and so uP**
and 6P** can be calculated. Equation (14) is expressed in semi-discretized form and therefore
needs to be fully discretized. It is straightforward to go back and discretize Equations (12) and
(13). For Equation (14) we use modified central differencing for the second-order derivative
terms, and we integrate the equation around a control volume for the continuity term. We
approximate the second-order derivative term as follows:
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A similar approach is adopted in Reference [32], where they assume a harmonic average of the
B coefficients.

So far, we have detailed a scheme where odd–even coupling may or may not occur. It is, in
fact, a better approach at avoiding odd–even coupling than using ‘standard discretization’,
because a compact Laplacian is formed for the pressure correction equation. We now postulate
a theory for removing the odd–even coupling. We start by introducing the following operator
�2, which is simply a ‘non-dimensionalized’ discretized second-order differential term, ex-
pressed as
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It is straightforward to show that for a Cartesian grid
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where ‘e’ and ‘w’ refer to the ‘east’ and ‘west’ cell lengths. Also, we can show that
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The dissipation term added to the governing pressure equation used in the Rhie and Chow [8]
methodology is not expressed directly in their paper, but we could express it as

dissipation=2d92p/BP
2d−1d92p/BP
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where the operators 2d92 and 1d92 refer to the discretized second-order derivative taken on a
grid with 2-nodal and 1-nodal spacing. We can approximate this difference as a fourth-order
term if we assume slow variation in the coefficient B. For example, referring to Hirsch [33] and
using uniform spacing, we find that
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Thus, the Rhie and Chow [8] methodology approximately applies a fourth-order dissipation
term. In this paper we assume that the variation of BP

2d and BP
1d is so small that we can justify

the application of a ‘true’ fourth-order dissipation term in the form of Equation (18).

2.3. An aside about the �2 operator

The non-dimensionalized second-order derivative term is a useful operator. For example, we
can use it to smooth a field variable
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where 0Bs�1 will be a parameter that will successfully smooth the results. Also, it can be
used to ‘model’ differential terms, such as the first-order or second-order terms, with a higher
degree of accuracy using 1-nodal spacing approximations in order to achieve accuracy greater
than the second-order. For example
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2.4. The dissipation term

Following on from Rhie and Chow [8] we could elect to add the following dissipation term
into the governing pressure equation (14)
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Figure 1. Illustration of the flow over a backward-facing step, showing a main reattachment region
which attaches at x1, an upper recirculation region, which separates at x2 and reattaches at x3.
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From Rhie and Chow and referring back to Equation (20), we know that a=0.5; however, it
has been pointed out there is a problem with the Rhie and Chow methodology because the
smoothing is dependent on the time step and the underrelaxation factor [9,34]. To remove this
problem we solve the governing pressure correction equation using B coefficients that only
contain the geometry terms; all other terms (temporal and pseudo-temporal) are neglected. In
this case, the value of a should be constant even if there is a variation in the value of the
underrelaxation and/or time step. Thus, in this paper, a was set to 0.04 for the example
problems.

2.5. Differencing scheme

It is interesting to note that, because a non-staggered grid is employed in the present study, we
need to introduce dissipation into the pressure field in order to remove unrealistic oscillations.
This approach seems to be quite a foreign idea; however, introducing artificial viscosity in
order to obtain numerically stable solutions for the velocity field is a well-established technique

Table I. Predictions of the main reattachment and separation positions at an
inlet Reynolds number of Re=800.

x3x1 x2

7.96 16.939.86FOAV No pressure dissipation
16.807.859.74FOAV Applied pressure dissipation

10.06 19.93SOAV No pressure dissipation 12.04
SOAV Applied pressure dissipation 19.8010.0512.02

20.969.6412.03Barton [36]
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Figure 2. U velocity profiles at various positions, relative to the step they at x=0, 2, 4, 6, 8, 10, 12, 14,
16 step heights downstream for the FOAV scheme; (a) no pressure dissipation and (b) applied pressure

dissipation.

[35]. In the present investigation, two crude differencing schemes are employed that do not use
an upwind bias, which is standard practice [36]. (The reason for this is the code was based on
a finite element development that did not incorporate an upwind bias.) Both differencing
schemes implemented work in the same way by applying additional viscosity such that the
ratio of the most negative coefficient component compared with the pole coefficient is at least
greater than negative unity (the ratio excludes temporal terms). This is approximately the
minimum amount of additional viscosity that can be applied in order to achieve numerical
stability. The first scheme is approximately first-order accurate and uses a 5-node molecule in
the form of a cross and is referred to as first-order additional viscosity (FOAV). The second
scheme is approximately second-order accurate it uses a 9-node molecule, again in the form of
a cross. We refer to this scheme as second-order additional viscosity (SOAV).

We do not argue that these differencing schemes are superior to other schemes, they have
been mainly used out of convenience. Further to this we need to make the point that the
differencing scheme and the suppression of pressure oscillations are almost separate issues.
Therefore, any differencing scheme can be used to demonstrate the pressure dissipation
scheme. In order to test the authority of the schemes, comparisons were made for the square
cavity flow using the first-order upwind differencing (FOUD) scheme [37]. These results were
undertaken mainly to double-check the trends with regard to problems with pressure oscilla-
tions. Predictions using FOUD and by the FOAV scheme, found similar results with regard to
suppressing the pressure oscillations; however, differences were found due to the hyperbolic
nature of the FOUD scheme.
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Figure 3. A contour plot of the pressure field in the main body of the channel for the FOAV scheme;
(a) no pressure dissipation and (b) applied pressure dissipation.

Figure 4. An illustration of the moving lid problem depicting the flow within the square cavity.
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2.6. Matrix sol6er

The discretized equations of u, 6 and p are solved using the tri-diagonal matrix algorithm [35].
The algorithm sweeps through the solution domain until the residuals reduce by four orders of
magnitude. Typically, overall changes in the velocity fields and pressure field are recorded until
the changes reduce by at least six orders of magnitude and the source term in the pressure
correction equation reduces by at least five orders of magnitude.

2.7. Boundary conditions

Where necessary, the methodology applies the following boundary conditions: first-order
upwind interpolation is applied at the outlet boundary in order to extrapolate the outlet
velocities. Inlet velocity values are prescribed. No-slip boundary conditions are applied at the
walls simply by setting velocity terms to zero. Second-order extrapolation is applied along
normal gradients for the pressure field for the inlet and outlet boundaries. Third-order
extrapolation is applied for the flat wall boundaries; greater accuracy is achieved because the
condition that

Figure 5. Velocity profiles along the centreline of the cavity for Re=1000 using the SOAV scheme, using
20×20 grid �, 40×40 grid �, 60×60 grid  and a 100×100 grid (—) for (a) no pressure dissipation

and (b) applied pressure dissipation.
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Figure 5 (Continued)

(p
(n

)
Wall

=0 (25)

is incorporated into the extrapolation.

3. EXAMPLE APPLICATIONS

The non-staggered scheme is applied to two example applications: laminar flow over a
backward-facing step and laminar flow in a square cavity with a driven lid. There are various
benchmark solutions for these two applications.

3.1. Flow o6er a backward-facing step

Flow over a backward-facing step is one of the simplest flow problems where flow separation
and reattachment occurs. The present research considers flow over a backward-facing step in
a planar duct; a similar configuration has been experimentally and numerically studied by
Armaly et al. [38]. Computations of this backward-facing step geometry have been made by a
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I. E. BARTON AND R. KIRBY950

large number of authors [32,39–42]. The flow configuration is illustrated in Figure 1. The
problem prescribes a parabola u velocity profile at the inlet boundary. The step height and the
height of the inlet channel are the same. The Reynolds number is set to Re=800. This test case
has become a standard numerical test [43]. The Reynolds number is defined using twice the
step height as the length scale, the mean inlet velocity and the fluid’s dynamic viscosity [38].
The problem domain is 30 step heights long in the main channel and 6 step heights long for
the inlet channel.

The computations are undertaken on a non-uniform grid distribution in the x-direction and
a uniform grid distribution in the y-direction. The grid system uses 80×40 grid points. There
is grid refinement close to the step wall. This grid distribution is relatively coarse compared
with grid independent results undertaken in Reference [36], where second-order accurate
differencing schemes are applied. A coarse grid is applied so that the results will experience
pressure oscillations. The problems with odd–even coupling are strongly related to the grid
refinement and to the flow conditions, to a lesser degree the type of differencing scheme
applied plays at part. The moderately refined grid used in this paper makes the problem a

Figure 6. Velocity profiles along the centreline of the cavity for Re=1000 using the FOAV scheme, using
20×20 grid �, 40×40 grid �, 60×60 grid  and a 100×100 grid (—) for (a) no pressure dissipation

and (b) applied pressure dissipation.
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Figure 6 (Continued)

reasonable test for the non-staggered methodology because the flow pattern could be solved on
a finer grid that would not require special non-staggered treatment. There are numerous
predictions of this problem; a recent review is given in Reference [42]. It is sufficient to say that
recent accurate predictions have been detailed in References [36,40,43].

The illustration in Figure 1 shows that there is a main recirculation region with a
reattachment at x1. The Reynolds number is sufficiently large to cause a strong adverse
pressure gradient along the upper boundary that causes separation at x2, the flow then
reattaches at x3. The results for the reattachment and separation positions are shown in Table
I. Predictions are shown for the FOAV and SOAV schemes, which apply the pressure
dissipation term and predictions that do not apply it. Table I also shows the grid-independent
results from the study of Barton [36].

First, we will consider the overall predictions in comparison with grid-independent results.
Compared with the grid independent results, the FOAV scheme underpredicts the reattach-
ment and separation positions; however, the SOAV scheme predicts similar results to the
grid-independent results. Despite the failings of the FOAV scheme there is a reasonably large
upper recirculation region that is being predicted. The underpredictions of the reattachment
and separation points compared with grid independent results is to be expected, similar results

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 939–959
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have been predicted elsewhere most notably in Armaly et al. [38]. Their study used a standard
first-order upwind differencing (FOUD) scheme. The FOAV scheme predicts overall better
results than Armaly et al., admittedly on a different grid system. Nonetheless, the study of
Armaly et al. obtained a main reattachment that tends to agree with the grid-independent
results; however, it fails to predict an upper recirculation that is in good agreement with the
grid-independent results. This is a reflection of the FOUD scheme having similar accuracy
compared with the FOAV scheme but also, it shows that the first-order upwind differencing
scheme models the hyperbolic nature of the flow to a greater degree. This has the advantage
of predicting more accurately results immediately downstream, but the probable disadvantage
that the ‘overall flow pattern’ maybe somewhat distorted. The FOAV scheme models the
elliptic nature of the flow to a greater degree, therefore, a large upper recirculation region is
predicted for this scheme in comparison FOUD. The accuracy of the SOAV scheme is such
that its results are similar to the grid-independent results, and therefore there is very little we
can conclude from the demonstration, except that the differencing scheme must be working
successfully.

Figure 7. Pressure variation along the centreline of the cavity for Re=1000 using the SOAV scheme,
using 20×20 grid �, 40×40 grid �, 60×60 grid  and a 100×100 grid (—) for (a) no pressure

dissipation and (b) applied pressure dissipation.
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Figure 7 (Continued)

Next, we address the more important question which is what affect does the application of
the pressure dissipation term have to the results? Does the pressure dissipation term affect the
velocity field? And are there any wiggles in the pressure solution? The velocity profiles are
found to be virtually identical with or without the application of pressure dissipation; this is
confirmed in Table I, where the reattachment and separation positions are very similar. The
difference between the results that apply pressure dissipation and those that do not is at most
a tenth of a step height in length. This is equivalent to a difference of about 1 per cent;
therefore, the application of the pressure dissipation term is having very little effect on the
overall velocity field. Though, it has to be admitted that, the application of pressure dissipation
term does slightly worsen the velocity predictions in comparison with grid independent results.
In Figure 2 we show predictions of the velocity profiles for the FOAV scheme; Figure 2(a)
shows predictions where no dissipation is applied and Figure 2(b) shows predictions where it
is. These profiles show that there certainly is not any discernible difference in the velocity
fields. For the SOAV scheme we again confirm that there is no discernible difference in the
velocity fields, depending on whether pressure dissipation is being applied or not. In Figure 3
we see the predictions of the pressure field for the FOAV scheme. Figure 3(a) shows the
prediction where no dissipation is applied and Figure 3(b) shows where it is. In this case, we

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 939–959
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notice that if no pressure dissipation is applied, then pressure wiggles occur near the corner of
the step, which are smoothed out when dissipation is applied. For the SOAV scheme a similar
pattern is observed, however, in this case the pressure wiggles have a slightly increased range
downstream of 0.2 step heights from the corner of the step when no pressure dissipation is
applied. Even so, when the pressure dissipation term is applied the pressure field is completely
smooth. Predicting a smooth pressure field in the region around the step corner poses the
greatest difficulties. Other authors have published ‘non-staggered methodologies’, which
predict wiggles in this region, proving their methodology is not working, as it should [44]. In
the present study, the predictions that use a pressure dissipation have completely smoothed out
these strong wiggles without removing other pressure peaks, demonstrating a successful
scheme. It is interesting to note, however, that there are no significant wiggles elsewhere in the
solution away from the step corner and the inlet channel. Therefore, we could probably
improve the current methodology by applying dissipation only in regions of the flow where it
is needed; however, identifying where the dissipation is needed and how much should be
applied is beyond the scope of this paper.

Figure 8. Pressure variation along the centreline of the cavity for Re=1000 using the FOAV scheme,
using 20×20 grid �, 40×40 grid �, 60×60 grid  and a 100×100 grid (—) for (a) no pressure

dissipation and (b) applied pressure dissipation.
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Figure 8 (Continued)

3.2. Laminar flow in a square ca6ity with a dri6en lid

A typical test for non-staggered methodologies is laminar flow in a square cavity with a driven
lid using uniform grid distributions. The problem is illustrated in Figure 4. The illustration
shows a large vortex in the middle of a square cavity that is created by a ‘driven lid’. The
symmetry and uniform distribution of the grid is suppose to amplify any problems that may
be associated with the non-staggered methodology. For example, this problem and the similar
problem of buoyancy-driven recirculation in a square cavity has been studied in a number of
papers which test a non-staggered methodology, refer to, for example, References
[25,26,32,45,46]. In this investigation various grid systems are employed consisting of 20×20,
40×40, 60×60 and 100×100 grid points.

In order to predict problems it is important to consider a high Reynolds number case;
initially, results for Re=100 were predicted, which is the same case study undertaken by Date
[26]. However, it was not found to be a particularly interesting case because virtually no
pressure oscillations were observed even for the 20×20 grid. We found that the predictions for
the velocity profiles and pressure variation along the centre of the cavity did not require
pressure dissipation for either differencing scheme. The SOAV scheme produced very similar
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results for all four grids, maximum reverse flow of −0.2ULid and pressure peak of
−0.95rULid

2 . The results for the FOAV scheme slowly converged to the values for the
100×100 grid. These results demonstrate that the SOAV scheme is outperforming the FOAV
scheme, it implies that pressure oscillations are strongly dependent on the local grid Reynolds
number (grid Peclet number), but most importantly that the Reynolds number case is too low
to be of any interest. So, we considered a much higher Reynolds number case, one of
Re=1000.

The Reynolds number is higher than typical values found in literature for the study of
pressure wiggle suppression, however, there are available a variety of solutions for comparison
[46,47]. In this case high pressure gradients are predicted, therefore, we feel the scheme is being
tested well beyond normal limits. In Figure 5 results for the velocity profile are shown using
the SOAV scheme. Figure 5(a) shows the velocity profile at the centre of the cavity, obtained
from the various grids for the predictions that do not apply pressure dissipation and Figure
5(b) shows results from the various grids that do apply pressure dissipation. There is a single
main recirculation region in the cavity, and we observe in the figure that the negative reverse
flow has maximum of about 0.4 of the lid speed. This is slightly larger if no pressure
dissipation is applied suggesting the application of pressure dissipation has a slightly deterio-
rating effect on the prediction of the velocity field. The velocity profiles from the various grids
appear to change less dramatically for the solutions that do not apply pressure dissipation.
This suggests that the addition of pressure dissipation is having an increasingly stronger effect
for the coarser grids. This is a welcome outcome as pressure wiggles are dependent on the local
grid Reynolds number. In comparison with the benchmark solutions of Ghia et al. [47], the
results using the 60×60 and 100×100 grids are virtually identical. The SOAV scheme gives
similar results for the finest grids used. The main difference is incurred with the use of the
coarsest grid, though there is rapid improvement in the predictions with grid refinement. In
Figure 6 we show the same set of results for the FOAV scheme. In terms of comparing the
results that do and do not apply the pressure dissipation the exact same trends are observed;
however, there is now the added complexity that the FOAV scheme fails to predict the results
very accurately for any grid systems. Nonetheless, the important point is that the pressure
wiggles (as implied with the previous set of results for Re=100), do not appear to be strongly
dependent on the type of differencing scheme used but dependent on the local grid Reynolds
number.

In Figure 7, we initially consider predictions using the SOAV scheme. Figure 7(a) shows the
variation of pressure along the centre of the cavity using various grids for the results that do
not apply the pressure dissipation term, and Figure 7(b) shows the results that do apply the
pressure dissipation term. Unlike the low Reynolds number results using the coarse grid we
now observe significant differences depending on whether pressure dissipation is applied or
not. The first difference is that the application of the pressure dissipation smoothes the
pressure variation results successfully; this is a welcome result. However, the second difference
is that the application of the pressure dissipation slightly deteriorates the overall results in
comparison with the fine grid results. This is confirmed when analysing the overall pressure
fields predicted. These results confirm that, by adding pressure dissipation, there is a slight
deterioration in the overall accuracy of the results, which decreases with grid refinement, but
(perhaps more importantly) that the pressure dissipation term successfully suppresses ‘non-
physical’ wiggles in the pressure field.
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In Figure 8, we show the predictions of pressure along the centre of the cavity for the FOAV
scheme. In this case, there is a dramatic difference between the pressure variations using the
various grids, unlike the previous set of results we observe that the results have not achieved
grid-independency. This is because the FOAV scheme is being pushed well beyond its limits.
The results from the fine and medium grids are comparable with their counterparts that do
and do not apply pressure dissipation. This observation is just a demonstration that pressure
wiggles are dependent on grid refinement and perhaps in the future with superior computing
power, the need to apply pressure dissipation (and artificial viscosity) will become obsolete.

4. CONCLUDING REMARKS

The investigation demonstrated problems associated with non-staggered methodologies that
have been previously observed. Namely, pressure wiggles are strongly dependent on flow
conditions and grid refinement.

We have shown that odd–even coupling between the pressure and velocity fields can be
suppressed by adding an additional fourth-order pressure dissipation term into the governing
pressure equations. Using a semi-discretized approach to derive the governing algebraic
equations allows us to derive equations that have a compact Laplacian for the governing
pressure equation.

The non-staggered methodology was successfully tested on two standard laminar flow
problems. In both test problems even for crude grid distributions and high cell Reynolds
numbers no non-physical pressure wiggles are predicted provided a pressure dissipation is
applied. Excessive application of the pressure dissipation will clearly lead to deterioration in
the overall results. Therefore, limiting the amount of dissipation applied is probably a useful
target for future work.
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